博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
Java并发编程(十)阻塞队列
阅读量:5745 次
发布时间:2019-06-18

本文共 8642 字,大约阅读时间需要 28 分钟。

使用非阻塞队列的时候有一个很大问题就是:它不会对当前线程产生阻塞,那么在面对类似消费者-生产者的模型时,就必须额外地实现同步策略以及线程间唤醒策略,这个实现起来就非常麻烦。但是有了阻塞队列就不一样了,它会对当前线程产生阻塞,比如一个线程从一个空的阻塞队列中取元素,此时线程会被阻塞直到阻塞队列中有了元素。当队列中有元素后,被阻塞的线程会自动被唤醒(不需要我们编写代码去唤醒)。这样提供了极大的方便性。

本文先讲述一下java.util.concurrent包下提供主要的几种阻塞队列,然后分析了阻塞队列和非阻塞队列的中的各个方法,接着分析了阻塞队列的实现原理,最后给出了一个实际例子和几个使用场景。

一.几种主要的阻塞队列

自从Java 1.5之后,在java.util.concurrent包下提供了若干个阻塞队列,主要有以下几个:ArrayBlockingQueue:基于数组实现的一个阻塞队列,在创建ArrayBlockingQueue对象时必须制定容量大小。并且可以指定公平性与非公平性,默认情况下为非公平的,即不保证等待时间最长的队列最优先能够访问队列。LinkedBlockingQueue:基于链表实现的一个阻塞队列,在创建LinkedBlockingQueue对象时如果不指定容量大小,则默认大小为Integer.MAX_VALUE。PriorityBlockingQueue:以上2种队列都是先进先出队列,而PriorityBlockingQueue却不是,它会按照元素的优先级对元素进行排序,按照优先级顺序出队,每次出队的元素都是优先级最高的元素。注意,此阻塞队列为无界阻塞队列,即容量没有上限(通过源码就可以知道,它没有容器满的信号标志),前面2种都是有界队列。DelayQueue:基于PriorityQueue,一种延时阻塞队列,DelayQueue中的元素只有当其指定的延迟时间到了,才能够从队列中获取到该元素。DelayQueue也是一个无界队列,因此往队列中插入数据的操作(生产者)永远不会被阻塞,而只有获取数据的操作(消费者)才会被阻塞。
View Code

 

二.阻塞队列中的方法 VS 非阻塞队列中的方法

1.非阻塞队列中的几个主要方法:

add(E e):将元素e插入到队列末尾,如果插入成功,则返回true;如果插入失败(即队列已满),则会抛出异常;remove():移除队首元素,若移除成功,则返回true;如果移除失败(队列为空),则会抛出异常;offer(E e):将元素e插入到队列末尾,如果插入成功,则返回true;如果插入失败(即队列已满),则返回false;poll():移除并获取队首元素,若成功,则返回队首元素;否则返回null;peek():获取队首元素,若成功,则返回队首元素;否则返回null 对于非阻塞队列,一般情况下建议使用offer、poll和peek三个方法,不建议使用add和remove方法。因为使用offer、poll和peek三个方法可以通过返回值判断操作成功与否,而使用add和remove方法却不能达到这样的效果。注意,非阻塞队列中的方法都没有进行同步措施。
View Code

2.阻塞队列中的几个主要方法:

阻塞队列包括了非阻塞队列中的大部分方法,上面列举的5个方法在阻塞队列中都存在,但是要注意这5个方法在阻塞队列中都进行了同步措施。除此之外,阻塞队列提供了另外4个非常有用的方法:put(E e)take()offer(E e,long timeout, TimeUnit unit)poll(long timeout, TimeUnit unit)  put方法用来向队尾存入元素,如果队列满,则等待;take方法用来从队首取元素,如果队列为空,则等待;offer方法用来向队尾存入元素,如果队列满,则等待一定的时间,当时间期限达到时,如果还没有插入成功,则返回false;否则返回true;poll方法用来从队首取元素,如果队列空,则等待一定的时间,当时间期限达到时,如果取到,则返回null;否则返回取得的元素;
View Code

 

三.阻塞队列的实现原理

以ArrayBlockingQueue为例

首先看一下ArrayBlockingQueue类中的几个成员变量:

1 public class ArrayBlockingQueue
extends AbstractQueue
2 implements BlockingQueue
, java.io.Serializable { 3 4 private static final long serialVersionUID = -817911632652898426L; 5 6 /** The queued items */ 7 private final E[] items; 8 /** items index for next take, poll or remove */ 9 private int takeIndex;10 /** items index for next put, offer, or add. */11 private int putIndex;12 /** Number of items in the queue */13 private int count;14 15 /*16 * Concurrency control uses the classic two-condition algorithm17 * found in any textbook.18 */19 20 /** Main lock guarding all access */21 private final ReentrantLock lock;22 /** Condition for waiting takes */23 private final Condition notEmpty;24 /** Condition for waiting puts */25 private final Condition notFull;26 }
View Code

可以看出,ArrayBlockingQueue中用来存储元素的实际上是一个数组,takeIndex和putIndex分别表示队首元素和队尾元素的下标,count表示队列中元素的个数。

lock是一个可重入锁,notEmpty和notFull是等待条件。

下面看一下ArrayBlockingQueue的构造器,构造器有三个重载版本:

public ArrayBlockingQueue(int capacity) {}public ArrayBlockingQueue(int capacity, boolean fair) { }public ArrayBlockingQueue(int capacity, boolean fair,                          Collection
c) {}
View Code

第一个构造器只有一个参数用来指定容量,第二个构造器可以指定容量和公平性,第三个构造器可以指定容量、公平性以及用另外一个集合进行初始化。

然后看它的两个关键方法的实现:put()和take():

public void put(E e) throws InterruptedException {    if (e == null) throw new NullPointerException();    final E[] items = this.items;    final ReentrantLock lock = this.lock;    lock.lockInterruptibly();    try {        try {            while (count == items.length)                notFull.await();        } catch (InterruptedException ie) {            notFull.signal(); // propagate to non-interrupted thread            throw ie;        }        insert(e);    } finally {        lock.unlock();    }}
View Code

从put方法的实现可以看出,它先获取了锁,并且获取的是可中断锁,然后判断当前元素个数是否等于数组的长度,如果相等,则调用notFull.await()进行等待,如果捕获到中断异常,则唤醒线程并抛出异常。

当被其他线程唤醒时,通过insert(e)方法插入元素,最后解锁。

我们看一下insert方法的实现:

private void insert(E x) {    items[putIndex] = x;    putIndex = inc(putIndex);    ++count;    notEmpty.signal();}
View Code

它是一个private方法,插入成功后,通过notEmpty唤醒正在等待取元素的线程。

下面是take()方法的实现:

public E take() throws InterruptedException {    final ReentrantLock lock = this.lock;    lock.lockInterruptibly();    try {        try {            while (count == 0)                notEmpty.await();        } catch (InterruptedException ie) {            notEmpty.signal(); // propagate to non-interrupted thread            throw ie;        }        E x = extract();        return x;    } finally {        lock.unlock();    }}
View Code

跟put方法实现很类似,只不过put方法等待的是notFull信号,而take方法等待的是notEmpty信号。在take方法中,如果可以取元素,则通过extract方法取得元素,下面是extract方法的实现:

private E extract() {    final E[] items = this.items;    E x = items[takeIndex];    items[takeIndex] = null;    takeIndex = inc(takeIndex);    --count;    notFull.signal();    return x;}
View Code

跟insert方法也很类似。

其实从这里大家应该明白了阻塞队列的实现原理,事实它和我们用Object.wait()、Object.notify()和非阻塞队列实现生产者-消费者的思路类似,只不过它把这些工作一起集成到了阻塞队列中实现。

 

四.示例和使用场景

先使用Object.wait()和Object.notify()、非阻塞队列实现生产者-消费者模式:

public class Test {    private int queueSize = 10;    private PriorityQueue
queue = new PriorityQueue
(queueSize); public static void main(String[] args) { Test test = new Test(); Producer producer = test.new Producer(); Consumer consumer = test.new Consumer(); producer.start(); consumer.start(); } class Consumer extends Thread{ @Override public void run() { consume(); } private void consume() { while(true){ synchronized (queue) { while(queue.size() == 0){ try { System.out.println("队列空,等待数据"); queue.wait(); } catch (InterruptedException e) { e.printStackTrace(); queue.notify(); } } queue.poll(); //每次移走队首元素 queue.notify(); System.out.println("从队列取走一个元素,队列剩余"+queue.size()+"个元素"); } } } } class Producer extends Thread{ @Override public void run() { produce(); } private void produce() { while(true){ synchronized (queue) { while(queue.size() == queueSize){ try { System.out.println("队列满,等待有空余空间"); queue.wait(); } catch (InterruptedException e) { e.printStackTrace(); queue.notify(); } } queue.offer(1); //每次插入一个元素 queue.notify(); System.out.println("向队列取中插入一个元素,队列剩余空间:"+(queueSize-queue.size())); } } } }}
View Code

这个是经典的生产者-消费者模式,通过阻塞队列和Object.wait()和Object.notify()实现,wait()和notify()主要用来实现线程间通信。

具体的线程间通信方式(wait和notify的使用)在后续问章中会讲述到。

下面是使用阻塞队列实现的生产者-消费者模式:

public class Test {    private int queueSize = 10;    private ArrayBlockingQueue
queue = new ArrayBlockingQueue
(queueSize); public static void main(String[] args) { Test test = new Test(); Producer producer = test.new Producer(); Consumer consumer = test.new Consumer(); producer.start(); consumer.start(); } class Consumer extends Thread{ @Override public void run() { consume(); } private void consume() { while(true){ try { queue.take(); System.out.println("从队列取走一个元素,队列剩余"+queue.size()+"个元素"); } catch (InterruptedException e) { e.printStackTrace(); } } } } class Producer extends Thread{ @Override public void run() { produce(); } private void produce() { while(true){ try { queue.put(1); System.out.println("向队列取中插入一个元素,队列剩余空间:"+(queueSize-queue.size())); } catch (InterruptedException e) { e.printStackTrace(); } } } }}
View Code

有没有发现,使用阻塞队列代码要简单得多,不需要再单独考虑同步和线程间通信的问题。

在并发编程中,一般推荐使用阻塞队列,这样实现可以尽量地避免程序出现意外的错误。

阻塞队列使用最经典的场景就是socket客户端数据的读取和解析,读取数据的线程不断将数据放入队列,然后解析线程不断从队列取数据解析。还有其他类似的场景,只要符合生产者-消费者模型的都可以使用阻塞队列。

 

转载于:https://www.cnblogs.com/ganchuanpu/p/6158402.html

你可能感兴趣的文章
nginx rewrite
查看>>
前端安全系列(一):如何防止XSS攻击?
查看>>
查看Linux并发连接数
查看>>
你是谁不重要,关键是你跟谁!
查看>>
CSS中规则@media的用法
查看>>
pychecker:分析你的python代码
查看>>
我的友情链接
查看>>
DNS显性+隐性URL转发原理
查看>>
我的友情链接
查看>>
网易有道 IP地址、手机号码归属地和身份证 查询接口API
查看>>
鼠标停留在GridView某一行时行的颜色改变
查看>>
系列3:WAS Liberty Profile hello mysql jdbc
查看>>
基础知识:python模块的导入
查看>>
Android MVC之我的实现
查看>>
我的友情链接
查看>>
我的友情链接
查看>>
关于批处理-1
查看>>
Tomcat部署Web应用方法总结
查看>>
Python3 django2.0 字段加密 解密 AES
查看>>
CCNA实验之:网络地址转换(NAT)实验
查看>>